ODrive Reference

class ODrive
test_function(delta) int
Parameters:

delta (int) –

get_adc_voltage(gpio) float

Reads the ADC voltage of the specified GPIO. The GPIO should be in GpioMode.ANALOG_IN.

Parameters:

gpio (int) –

save_configuration() bool
erase_configuration()

Resets all config variables to their default values and reboots the controller

reboot()

Reboots the controller without saving the current configuraiton

enter_dfu_mode()

Enters the Device Firmware Update mode

get_interrupt_status(irqn) int

Returns information about the specified interrupt number.

Parameters:

irqn (int) – -12…-1: processor interrupts, 0…239: NVIC interrupts

get_dma_status(stream_num) int

Returns information about the specified DMA stream.

Parameters:

stream_num (int) – 0…7: DMA1 streams, 8…15: DMA2 streams

get_gpio_states() int

Returns the logic states of all GPIOs. Bit i represents the state of GPIOi.

set_gpio(num, status) bool

Sets the state of the specified GPIO.

Parameters:
get_drv_fault() int
clear_errors()

Clear all the errors of this device including all contained submodules.

get_raw(address) int
Parameters:

address (int) –

vbus_voltage: Float32Property

Voltage on the DC bus as measured by the ODrive.

ibus: Float32Property

Current on the DC bus as calculated by the ODrive.

A positive value means that the ODrive is consuming power from the power supply, a negative value means that the ODrive is sourcing power to the power supply.

This value is equal to the sum of the motor currents and the brake resistor currents. The motor currents are measured, the brake resistor current is calculated based on config.brake_resistor0.resistance.

ibus_report_filter_k: Float32Property

Filter gain for the reported ibus. Set to a value below 1.0 to get a smoother line when plotting ibus. Set to 1.0 to disable. This filter is only applied to the reported value and not for internal calculations.

serial_number: Uint64Property
hw_version_major: Uint8Property
hw_version_minor: Uint8Property
hw_version_variant: Uint8Property
fw_version_major: Uint8Property
fw_version_minor: Uint8Property
fw_version_revision: Uint8Property
commit_hash: Uint32Property
fw_version_unreleased: Uint8Property

0 for official releases, 1 otherwise

n_evt_sampling: Uint32Property

Number of input sampling events since startup (modulo 2^32)

n_evt_control_loop: Uint32Property

Number of control loop iterations since startup (modulo 2^32)

task_timers_armed: BoolProperty

Set by a profiling application to trigger sampling of a single control iteration. Cleared by the device as soon as the sampling is complete.

task_times: ODrive.TaskTimes
system_stats: ODrive.SystemStats
user_config_loaded: Uint32Property
misconfigured: BoolProperty

If this property is true, something is bad in the configuration. The ODrive can still be used in this state but the user should investigate which setting is problematic. This variable does not cover all misconfigurations.

Possible causes:
  • A GPIO was set to a mode that it doesn’t support

  • A GPIO was set to a mode for which the corresponding feature was not enabled. Example: GpioMode.UART_A was used without enabling config.enable_uart_a.

  • A feature was enabled which is not supported on this hardware. Example: config.enable_uart_c set to true on ODrive v3.x.

  • A GPIO was used as an interrupt input for two internal components or two GPIOs that are mutually exclusive in their interrupt capability were both used as interrupt input. Example: config.step_gpio_pin of both axes were set to the same GPIO.

oscilloscope: ODrive.Oscilloscope
can: ODrive.Can
test_property: Uint32Property
reboot_required: BoolProperty

Can be used by support software to indicate that a reboot is required.

amt21_encoder_group0: ODrive.Amt21EncoderGroup0
issues: ODrive.Issues
class ODrive.TaskTimes
sampling: ODrive.TaskTimer
encoder_update: ODrive.TaskTimer
control_loop_misc: ODrive.TaskTimer
control_loop_checks: ODrive.TaskTimer
current_sense_wait: ODrive.TaskTimer
dc_calib_wait: ODrive.TaskTimer
class ODrive.SystemStats
uptime: Uint32Property
min_heap_space: Uint32Property
max_stack_usage_axis: Uint32Property
max_stack_usage_usb: Uint32Property
max_stack_usage_uart: Uint32Property
max_stack_usage_can: Uint32Property
max_stack_usage_startup: Uint32Property
stack_size_axis: Uint32Property
stack_size_usb: Uint32Property
stack_size_uart: Uint32Property
stack_size_startup: Uint32Property
stack_size_can: Uint32Property
prio_axis: Int32Property
prio_usb: Int32Property
prio_uart: Int32Property
prio_startup: Int32Property
prio_can: Int32Property
usb: ODrive.SystemStats.Usb
i2c: ODrive.SystemStats.I2C
class ODrive.Amt21EncoderGroup0
raw: Float32Property
config: ODrive.Amt21EncoderGroup0.Config
class ODrive.Issues
get(index) tuple[int, int, int, int]
Parameters:

index (int) –

length: Uint32Property
class ODrive.Config
enable_uart_a: BoolProperty

Enables/disables UART_A.

You also need to set the corresponding GPIOs to GpioMode.UART_A. Refer to the UART Interface page to see which pins support UART_A. Changing this requires a reboot.

enable_uart_b: BoolProperty

Enables/disables UART_B.

You also need to set the corresponding GPIOs to GpioMode.UART_B. Refer to the UART Interface page to see which pins support UART_B. Changing this requires a reboot.

enable_uart_c: BoolProperty

Not supported on ODrive v3.x.

uart_a_baudrate: Uint32Property

Defines the baudrate used on the UART interface.

Some baudrates will have a small timing error due to hardware limitations.

Here’s an (incomplete) list of baudrates for ODrive v3.x:

Configured

Actual

Error [%]

1.2 KBps

1.2 KBps

0

2.4 KBps

2.4 KBps

0

9.6 KBps

9.6 KBps

0

19.2 KBps

19.195 KBps

0.02

38.4 KBps

38.391 KBps

0.02

57.6 KBps

57.613 KBps

0.02

115.2 KBps

115.068 KBps

0.11

230.4 KBps

230.769 KBps

0.16

460.8 KBps

461.538 KBps

0.16

921.6 KBps

913.043 KBps

0.93

1.792 MBps

1.826 MBps

1.9

1.8432 MBps

1.826 MBps

0.93

For more information refer to Section 30.3.4 and Table 142 (the column with f_PCLK = 42 MHz) in the STM datasheet.

uart_b_baudrate: Uint32Property

Defines the baudrate used on the UART interface.

See uart_a_baudrate for details.

uart_c_baudrate: Uint32Property

Not supported on ODrive v3.x.

enable_can_a: BoolProperty

Enables CAN. Changing this setting requires a reboot.

enable_i2c_a: BoolProperty

Enables I2C. The I2C pins on ODrive v3.x are in conflict with CAN. This setting has no effect if enable_can_a is also true. This setting has no effect on ODrive v3.2 or earlier. Changing this setting requires a reboot.

usb_cdc_protocol: Property[ODrive.StreamProtocolType]

The protocol that’s being run on the device’s virtual COM port on USB. Note that the ODrive has two independent interfaces on USB: One is the virtual COM port (affected by this option) and the other one is a vendor specific interface which always runs Fibre. So changing this option does not affect the working of odrivetool.

uart0_protocol: Property[ODrive.StreamProtocolType]
uart1_protocol: Property[ODrive.StreamProtocolType]
uart2_protocol: Property[ODrive.StreamProtocolType]
max_regen_current: Float32Property

The bus current allowed to flow back to the power supply before the brake resistor module will start shunting current.

dc_bus_undervoltage_trip_level: Float32Property

Minimum voltage below which the motor stops operating.

dc_bus_overvoltage_trip_level: Float32Property

Maximum voltage above which the motor stops operating.

This protects against cases in which the power supply fails to dissipate the brake power if the brake resistor is disabled. The default is 26V for the 24V board version and 52V for the 48V board version.

dc_max_positive_current: Float32Property

Max current the power supply can source.

dc_max_negative_current: Float32Property

Max current the power supply can sink.

This is the amount of current allowed to flow back into the power supply. The convention is that it is negative. By default, it is set to a conservative value of 10mA. If you are using a brake resistor and getting DC_BUS_OVER_REGEN_CURRENT errors, raise it slightly. If you are not using a brake resistor and you intend to send braking current back to the power supply, set this to a safe level for your power source. Note that in that case, it should be higher than your motor current limit + current limit margin.

Set to -INFINITY to disable.

class ODrive.Can
error: Property[ODrive.Can.Error]
n_restarts: Uint32Property
n_rx: Uint32Property
config: ODrive.Can.Config
class ODrive.Endpoint
endpoint: EndpointRefProperty
min: Float32Property
max: Float32Property
class ODrive.Axis
watchdog_feed()

Feed the watchdog to prevent watchdog timeouts.

set_abs_pos(pos) float

Set the absolute position of the axis.

Returns the distance by which the reference was shifted. Add this to the previous position on any off-board controllers to effect an impulse free change of reference.

Do not use while in trajectory control mode.

Parameters:

pos (float) –

active_errors: Property[ODrive.Error]

Indicates the current error condition(s) of the axis. Each error flag clears automatically when the error condition goes away. If an attempt is made to activate the axis while an error is present, the axis immediately disarms and disarm_reason is updated accordingly.

disarm_reason: Property[ODrive.Error]

This value is updated every time the axis disarms and indicates the reason why the axis was disarmed. It can be cleared using clear_errors(). This variable is used for reporting only. It affects the status LED and the ERROR pin output but it does not prevent the axis from getting re-armed upon user request.

step_dir_active: BoolProperty
last_drv_fault: Uint32Property
steps: Int64Property

The current commanded position, in steps, while in step_dir mode

current_state: Property[ODrive.Axis.AxisState]

The current state of the axis

requested_state: Property[ODrive.Axis.AxisState]

The user’s commanded axis state

This is used to command the axis to change state or perform certain routines. Values input here will be “consumed” and queued by the state machine handler. Thus, reading this value back will usually show AxisState.UNDEFINED (0).

is_homed: BoolProperty

Whether or not the axis has been successfully homed.

config: ODrive.Axis.Config
motor: ODrive.Motor
controller: ODrive.Controller
trap_traj: ODrive.TrapezoidalTrajectory
min_endstop: ODrive.Endstop
max_endstop: ODrive.Endstop
mechanical_brake: ODrive.MechanicalBrake
pos_vel_mapper: ODrive.Mapper
commutation_mapper: ODrive.Mapper
interpolator: ODrive.Interpolator
task_times: ODrive.Axis.TaskTimes
procedure_result: Property[ODrive.ProcedureResult]
disarm_time: Float32Property
is_armed: BoolProperty
class ODrive.BrakeResistor
current_meas: Float32Property
current_meas_status: Uint32Property
duty: Float32Property
current: Float32Property

Calculated current dumped into the brake resistor.

This value is not measured but calculated based the configured brake resistance. It is therefore only reliable if the actual brake resistance matches the configured brake resistance.

In the future this might take into account feedback from current_meas.

chopper_temp: Float32Property

Estimate of the brake resistor chopper temperature.

is_armed: BoolProperty
is_saturated: BoolProperty

Indicates if the brake resistor reached saturation. This flag is latching and needs to be reset by the client before it can indicate another saturation event.

class ODrive.BrakeResistorConfig
enable: BoolProperty

Enable/disable the use of a brake resistor.

Setting this to False even though a brake resistor is connected is harmless. Setting this to True even though no brake resistor is connected can break the power supply. Changes to this value require a reboot to take effect.

resistance: Float32Property

Value of the brake resistor connected to the ODrive.

Note that there may be some extra resistance in your wiring and in the screw terminals, so if you are getting issues while braking you may want to increase this parameter by around 0.05 ohm.

If you set this to a lower value than the true brake resistance then the ODrive will not meed the max_regen_current constraint during braking, that is it will sink more than max_regen_current into the power supply. Some power supplies don’t like this. If you set this to a higher value than the true brake resistance then the ODrive will unnecessarily burn more power than required during braking.

enable_dc_bus_overvoltage_ramp: BoolProperty

Enables the DC bus overvoltage ramp feature.

If enabled, if the measured DC voltage exceeds dc_bus_overvoltage_ramp_start, the ODrive will sink more power than usual into the the brake resistor in an attempt to bring the voltage down again.

The brake duty cycle is increased by the following amount:
Remarks:
  • This feature is active even when all motors are disarmed.

  • This feature is disabled if resistance is non-positive.

dc_bus_overvoltage_ramp_start: Float32Property

See enable_dc_bus_overvoltage_ramp.

Do not set this lower than your usual ODrive.vbus_voltage,

dc_bus_overvoltage_ramp_end: Float32Property

See enable_dc_bus_overvoltage_ramp.

Must be larger than dc_bus_overvoltage_ramp_start, otherwise the ramp feature is disabled.

class ODrive.Motor
alpha_beta_controller: ODrive.AlphaBetaFrameController
foc: ODrive.FieldOrientedController
fet_thermistor: ODrive.OnboardThermistorCurrentLimiter
motor_thermistor: ODrive.OffboardThermistorCurrentLimiter
acim_estimator: ODrive.AcimEstimator
sensorless_estimator: ODrive.SensorlessEstimator
effective_current_lim: Float32Property

This value is the internally-limited value of phase current allowed according and is the minimum of the following:

  • config.motor.current_soft_max, optionally derated based on motor temperature.

  • config.inverter0.current_soft_max, optionally derated based on ODrive power stage temperature.

  • Maximum measurable current range

resistance_calibration_I_beta: Float32Property
input_id: Float32Property

Feedforward term for d-axis current. If ACIM autoflux is enabled, this parameter has no effect.

input_iq: Float32Property

Feedforward term for q-axis current.

class ODrive.Mapper
status: Property[ODrive.ComponentStatus]
pos_rel: Float32Property

Relative position since startup in turns. On the commutation_mapper this wraps around such that it’s always in [0, 1). On the pos_vel_mapper this wraps around if and only if <axis>.controller.config.circular_setpoints is set.

pos_abs: Float32Property

Absolute position. On pos_vel_mapper this is only available if the axis is homed.

vel: Float32Property
config: ODrive.Mapper.Config
class ODrive.OnboardEncoder
status: Property[ODrive.ComponentStatus]
raw: Float32Property
class ODrive.IncrementalEncoder
status: Property[ODrive.ComponentStatus]
pos_min: Float32Property
pos_max: Float32Property
pos_residual: Float32Property
raw: Uint16Property
config: ODrive.IncrementalEncoder.Config
class ODrive.HallEncoder
status: Property[ODrive.ComponentStatus]
hall_cnt: Uint8Property
raw_hall_state: Uint8Property
abs_pos_min: Float32Property
abs_pos_max: Float32Property
config: ODrive.HallEncoder.Config
class ODrive.SpiEncoder
status: Property[ODrive.ComponentStatus]
raw: Float32Property
n_errors: Uint32Property

Number of error events of this encoder.

Wraps around to zero at 2^32-1.

Possible error events:
  • Transfer took too long.

  • Encoder reported an error (currently only applicable to SpiEncoderMode.AMS).

inject_errors: BoolProperty

Deliberately injects occasional communication errors. For testing only.

config: ODrive.SpiEncoder.Config
class ODrive.EncoderEstimator
status: Property[ODrive.ComponentStatus]
pos_estimate: Float32Property
vel_estimate: Float32Property
class ODrive.Interpolator
status: Property[ODrive.ComponentStatus]
interpolation: Float32Property
config: ODrive.Interpolator.Config
class ODrive.ThermistorCurrentLimiter
class ODrive.OnboardThermistorCurrentLimiter
temperature: Float32Property
config: ODrive.OnboardThermistorCurrentLimiter.Config
class ODrive.OffboardThermistorCurrentLimiter
temperature: Float32Property
config: ODrive.OffboardThermistorCurrentLimiter.Config
class ODrive.AlphaBetaFrameController
current_meas_phA: Float32Property
current_meas_phB: Float32Property
current_meas_phC: Float32Property
current_meas_status_phA: Uint32Property
current_meas_status_phB: Uint32Property
current_meas_status_phC: Uint32Property
I_bus: Float32Property

The current in the ODrive DC bus. This is also the current seen by the power supply in most systems.

Ialpha_measured: Float32Property
Ibeta_measured: Float32Property
max_measurable_current: Float32Property

Indicates the maximum current that can be measured by the current sensors in the current hardware configuration. This value depends on <axis>.config.motor.current_hard_max and config.inverterN.current_hard_max.

power: Float32Property

The electrical power being delivered to the motor

n_evt_current_measurement: Uint32Property

Number of current measurement events since startup (modulo 2^32)

n_evt_pwm_update: Uint32Property

Number of PWM update events since startup (modulo 2^32)

class ODrive.FieldOrientedController
p_gain: Float32Property
i_gain: Float32Property
I_measured_report_filter_k: Float32Property
Id_setpoint: Float32Property
Iq_setpoint: Float32Property
Vd_setpoint: Float32Property
Vq_setpoint: Float32Property
phase: Float32Property
phase_vel: Float32Property
Id_measured: Float32Property

The phase current measured along the “d” axis in the FOC control loop.

This should be close to 0 for typical surface permanent magnet motors.

Iq_measured: Float32Property

The phase current measured along the “q” axis in the FOC control loop.

This is the torque-generating current, so motor torque is approx. torque_constant * Iq_measured

v_current_control_integral_d: Float32Property
v_current_control_integral_q: Float32Property
mod_d: Float32Property
mod_q: Float32Property
final_v_alpha: Float32Property
final_v_beta: Float32Property
class ODrive.Oscilloscope
config(addr0, addr1, addr2, addr3, addr4, addr5, addr6, addr7, addr8)
Parameters:
  • addr0 (int) –

  • addr1 (int) –

  • addr2 (int) –

  • addr3 (int) –

  • addr4 (int) –

  • addr5 (int) –

  • addr6 (int) –

  • addr7 (int) –

  • addr8 (int) –

trigger(trigger_point)
Parameters:

trigger_point (float) –

trigger_high_res()
get_raw(offset) tuple[int, int, int, int]
Parameters:

offset (int) –

size: Uint32Property
pos: Uint32Property
rollover: BoolProperty
recording: BoolProperty
class ODrive.AcimEstimator
rotor_flux: Float32Property

estimated magnitude of the rotor flux

slip_vel: Float32Property

estimated slip between physical and electrical angular velocity}

phase_offset: Float32Property

estimate offset between physical and electrical angular position}

stator_phase_vel: Float32Property

calculated setpoint for the electrical velocity}

stator_phase: Float32Property

calculated setpoint for the electrical phase}

class ODrive.Controller
move_incremental(displacement, from_input_pos)

Moves the axes’ goal point by a specified increment.

Parameters:
  • displacement (float) – The desired position change.

  • from_input_pos (bool) – If true, the increment is applied relative to input_pos. If false, the increment is applied relative to pos_setpoint, which usually corresponds roughly to the current position of the axis.

start_anticogging_calibration()
input_pos: Float32Property

Set the desired position of the axis. Only valid in ControlMode.POSITION_CONTROL. In InputMode.TUNING, this acts as a DC offset for the position sine wave.

input_vel: Float32Property

In ControlMode.VELOCITY_CONTROL, sets the desired velocity of the axis. In ControlMode.POSITION_CONTROL, sets the feed-forward velocity of the velocity controller In InputMode.TUNING, this acts as a DC offset for the velocity sine wave.

input_torque: Float32Property

In ControlMode.TORQUE_CONTROL, sets the desired output torque of the axis. In ControlMode.VELOCITY_CONTROL and ControlMode.POSITION_CONTROL, sets the feed-forward torque of the torque controller. In InputMode.TUNING, this acts as a DC offset for the torque sine wave.

pos_setpoint: Float32Property

The position reference actually being used by the position controller. This is the same as input_pos in InputMode.PASSTHROUGH, but may vary according to InputMode.

vel_setpoint: Float32Property

The velocity reference actually being used by the velocity controller. This is the same as input_vel in InputMode.PASSTHROUGH, but may vary according to InputMode.

torque_setpoint: Float32Property

The torque reference actually being used by the torque controller. This is the same as input_torque in InputMode.PASSTHROUGH, but may vary according to InputMode.

effective_torque_setpoint: Float32Property

The torque output generated by the controller and fed to the motor model.

trajectory_done: BoolProperty

Indicates the last commanded Trapezoidal Trajectory movement is complete.

vel_integrator_torque: Float32Property

The accumulated value of the velocity loop integrator

anticogging_valid: BoolProperty
autotuning_phase: Float32Property

The current phase angle of the InputMode.TUNING sine wave generator

config: ODrive.Controller.Config
autotuning: ODrive.Controller.Autotuning
mechanical_power: Float32Property

Mechanical power estimate. Torque * velocity

electrical_power: Float32Property

Electrical power estimate. Vdq·Idq

class ODrive.SensorlessEstimator
phase: Float32Property
pll_pos: Float32Property
phase_vel: Float32Property
class ODrive.TrapezoidalTrajectory
config: ODrive.TrapezoidalTrajectory.Config
class ODrive.Endstop
endstop_state: BoolProperty
config: ODrive.Endstop.Config
class ODrive.MechanicalBrake
engage()

This function engages the mechanical brake if one is present and enabled.

release()

This function releases the mechanical brake if one is present and enabled.

config: ODrive.MechanicalBrake.Config
class ODrive.TaskTimer
start_time: Uint32Property
end_time: Uint32Property
length: Uint32Property
max_length: Uint32Property
class ODrive.InverterConfig
current_soft_max: Float32Property

Maximum commanded current allowed for this inverter. See also motor.current_soft_max.

current_hard_max: Float32Property

Maximum measured current allowed for this inverter. Any measurement above current_hard_max will throw a CURRENT_LIMIT_VIOLATION error. See also motor.current_hard_max.

shunt_conductance: Float32Property

Set this to 1.0 / R_shunt if you have modified the shunt resistors.

drv_config: Uint64Property

Do not modify unless you know what you’re doing.

class ODrive.GpioMode
DIGITAL = 0 (0x0)

The pin can be used for one or more of these functions: Step, dir, enable, encoder index, hall effect encoder, SPI encoder nCS (this one is exclusive).

DIGITAL_PULL_UP = 1 (0x1)

Same as DIGITAL but with the internal pull-up resistor enabled.

DIGITAL_PULL_DOWN = 2 (0x2)

Same as DIGITAL but with the internal pull-down resistor enabled.

ANALOG_IN = 3 (0x3)

The pin can be used for one or more of these functions: Sin/cos encoders, analog input, get_adc_voltage().

UART_A = 4 (0x4)

See config.enable_uart_a.

UART_B = 5 (0x5)

This mode is not supported on ODrive v3.x.

UART_C = 6 (0x6)

This mode is not supported on ODrive v3.x.

CAN_A = 7 (0x7)

See config.enable_can_a.

I2C_A = 8 (0x8)

See config.enable_i2c_a.

SPI_A = 9 (0x9)

Note that the SPI pins on ODrive v3.x are hardwired so they cannot be configured through software. Consequently

PWM = 10 (0xA)

See PWM input.

ENC0 = 11 (0xB)

The pin is used by quadrature encoder 0.

ENC1 = 12 (0xC)

The pin is used by quadrature encoder 1.

ENC2 = 13 (0xD)

This mode is not supported on ODrive v3.x.

MECH_BRAKE = 14 (0xE)

This is to support external mechanical brakes.

STATUS = 15 (0xF)

The pin is used for status output (see axis.config.error_gpio_pin)

BRAKE_RES = 16 (0x10)

The pin is used to control a brake resistor board.

AUTO = 17 (0x11)

Let the ODrive decide how to use the pin. If multiple components try to use the same pin only one of them will be initialized and the other one will have a status of kBadConfig.

class ODrive.StreamProtocolType
FIBRE = 0 (0x0)

Machine-to-machine protocol which gives access to all features of the ODrive. This protocol is used by the official odrivetool and GUI. Developers who wish to interact with this protocol are advised to do so through libfibre.

ASCII = 1 (0x1)

Human readable protocol designed for easy implementation for cases where the use of libfibre is not desired or feasible. Refer to this page ` for details.

STDOUT = 2 (0x2)

Output of printf(). Only intended for developers who modify ODrive firmware.

ASCII_AND_STDOUT = 3 (0x3)

Combination of Ascii and Stdout.

OTHER = 4 (0x4)

The port is being used by another component (in the future: flow graph component). Currently this is only the AMT21 component.

class ODrive.ComponentStatus
NOMINAL = 0 (0x0)
NO_RESPONSE = 1 (0x1)
INVALID_RESPONSE_LENGTH = 2 (0x2)
PARITY_MISMATCH = 3 (0x3)
ILLEGAL_HALL_STATE = 4 (0x4)
POLARITY_NOT_CALIBRATED = 5 (0x5)
PHASES_NOT_CALIBRATED = 6 (0x6)
NUMERICAL_ERROR = 7 (0x7)
MISSING_INPUT = 8 (0x8)
RELATIVE_MODE = 9 (0x9)
UNCONFIGURED = 10 (0xA)
OVERSPEED = 11 (0xB)
INDEX_NOT_FOUND = 12 (0xC)
BAD_CONFIG = 13 (0xD)
NOT_ENABLED = 14 (0xE)
SPINOUT_DETECTED = 15 (0xF)
class ODrive.Error
INITIALIZING = 1 (0x1)

The system is initializing or reconfiguring.

SYSTEM_LEVEL = 2 (0x2)

Unexpected system error such as memory corruption, stack overflow, frozen thread, assert fail etc. This error is indicates firmware bug.

TIMING_ERROR = 4 (0x4)

An internal hard timing requirement was violated. This usually means that the device is computationally overloaded, either due to a specific user configuration or due to a firmware bug. This error should not occur during normal operation and can be considered similar to SYSTEM_ERROR.

MISSING_ESTIMATE = 8 (0x8)

The position estimate, velocity estimate or phase estimate was needed but invalid. This can mean:

  • The encoder has not been calibrated. Consult the documentation to see how to calibrate various encoder types.

  • Absolute position control was used before the axis was homed.

  • One of the active encoders is misbehaving or disconnected. Check the error information of all enabled encoders to see if this is the case.

BAD_CONFIG = 16 (0x10)

The ODrive configuration is invalid or incomplete. If you configured the ODrive through the GUI, this indicates a bug in the GUI.

Please verify the following:

  • axis.config.motor.direction is -1 or +1

  • axis.config.torque_soft_min <= axis.config.torque_soft_max

  • config.enable_brake_resistor = False or config.brake_resistor0.resistance > 0

  • axis.config.motor.phase_resistance and axis.config.motor.phase_inductance are valid and axis.config.motor.phase_resistance_inductance_valid = True

DRV_FAULT = 32 (0x20)

The gate driver chip reported an error.

If this keeps occurring during normal operation within the device’s specified operating conditions this can indicate hardware damage.

MISSING_INPUT = 64 (0x40)

No value was provided for input_pos, input_vel or input_torque.

This typically happens when using RC PWM as input and entering AxisState.CLOSED_LOOP_CONTROL before any pulse was registered. Make sure the PWM input is configured and connected correctly.

DC_BUS_OVER_VOLTAGE = 256 (0x100)

The DC voltage exceeded the limit configured in config.dc_bus_overvoltage_trip_level.

Confirm that you have a brake resistor of the correct value connected securely and that config.brake_resistor0.resistance is set to the value of your brake resistor.

You can monitor your PSU voltage using liveplotter in odrivetool by entering start_liveplotter(lambda: [odrv0.vbus_voltage]). If during a move you see the voltage rise above your PSU’s nominal set voltage then you have your brake resistance set too low. This may happen if you are using long wires or small gauge wires to connect your brake resistor to your odrive which will added extra resistance. This extra resistance needs to be accounted for to prevent this voltage spike. If you have checked all your connections you can also try increasing your brake resistance by ~ 0.01 ohm at a time to a maximum of 0.05 greater than your brake resistor value.

DC_BUS_UNDER_VOLTAGE = 512 (0x200)

The DC voltage fell below the limit configured in config.dc_bus_undervoltage_trip_level.

Confirm that your power leads are connected securely. For initial testing a 12V PSU which can supply a couple of amps should be sufficient while the use of low current ‘wall wart’ plug packs may lead to inconsistent behaviour and is not recommended.

You can monitor your PSU voltage using liveplotter in odrivetool by entering start_liveplotter(lambda: [odrv0.vbus_voltage]). If you see your votlage drop below config.dc_bus_undervoltage_trip_level (default: ~ 8V) then you will trip this error. Even a relatively small motor can draw multiple kW momentary and so unless you have a very large PSU or are running of a battery you may encounter this error when executing high speed movements with a high current limit. To limit your PSU power draw you can limit your motor current and/or velocity limit <axis>.controller.config.vel_limit and <axis>.config.motor.current_soft_max.

DC_BUS_OVER_CURRENT = 1024 (0x400)

Too much DC current was pulled, either at the motor level or at the board level (these two are identical for boards that don’t support a brake resistor).

DC_BUS_OVER_REGEN_CURRENT = 2048 (0x800)

Too much DC current was regenerated, either at the motor level or at the board level (these two are identical for boards that don’t support a brake resistor).

This can happen if your brake resistor is unable to handle the braking current. Check that (V_power_supply / brake_resistance) > <axis>.config.motor.current_hard_max.

CURRENT_LIMIT_VIOLATION = 4096 (0x1000)

The motor current exceeded <axis>.config.motor.current_hard_max. or config.inverterN.current_hard_max.

The current controller tries not to exceed <axis>.config.motor.current_soft_max, however a bit of overshoot is normal. Therefore, if you get this error, try to increase the margin between the soft and hard current limits.

If you have to increase the margin to more than 40% then something else might be wrong, for instance the motor could be damaged or the current controller might be unstable.

The current controller is a PI controller and its PI gains are automatically calculated based on config.motor.current_control_bandwidth and the motor resistance and inductance (pole placement). If you suspect an unstable current controller, make sure to review these variables.

MOTOR_OVER_TEMP = 8192 (0x2000)

The motor thermistor measured a temperature above motor.motor_thermistor.config.temp_limit_upper

INVERTER_OVER_TEMP = 16384 (0x4000)

The inverter thermistor measured a temperature above motor.fet_thermistor.config.temp_limit_upper

VELOCITY_LIMIT_VIOLATION = 32768 (0x8000)
POSITION_LIMIT_VIOLATION = 65536 (0x10000)
WATCHDOG_TIMER_EXPIRED = 16777216 (0x1000000)

The axis watchdog timer expired.

An amount of time greater than config.watchdog_timeout passed without the watchdog being fed.

ESTOP_REQUESTED = 33554432 (0x2000000)
An estop was requested from an external source. This can mean:
  • The estop message was received on CAN

  • An endstop was pressed

SPINOUT_DETECTED = 67108864 (0x4000000)
OTHER_DEVICE_FAILED = 134217728 (0x8000000)

Another device (axis or brake resistor) in the machine failed.

CALIBRATION_ERROR = 1073741824 (0x40000000)

A calibration procedure failed. See procedure_result for details.

class ODrive.ProcedureResult
SUCCESS = 0 (0x0)
BUSY = 1 (0x1)
CANCELLED = 2 (0x2)
DISARMED = 3 (0x3)
NO_RESPONSE = 4 (0x4)
POLE_PAIR_CPR_MISMATCH = 5 (0x5)
PHASE_RESISTANCE_OUT_OF_RANGE = 6 (0x6)

The measured motor phase resistance is outside of the plausible range.

During calibration the motor resistance and inductance is measured. If the measured motor resistance or inductance falls outside a set range this error will be returned. Check that all motor leads are connected securely.

The measured values can be viewed using odrivetool as is shown below:

In [2]: odrv0.axis0.config.motor.phase_inductance
Out[2]: 1.408751450071577e-05
In [3]: odrv0.axis0.config.motor.phase_resistance
Out[3]: 0.029788672924041748

Some motors will have a considerably different phase resistance and inductance than this. For example, gimbal motors, some small motors (e.g. < 10A peak current). If you think this applies to you try increasing config.resistance_calib_max_voltage from its default value of 1 using odrivetool and repeat the motor calibration process. If your motor has a small peak current draw (e.g. < 20A) you can also try decreasing config.calibration_current from its default value of 10A.

In general, you need:

  • config.resistance_calib_max_voltage > calibration_current * phase_resistance

  • config.resistance_calib_max_voltage < 0.5 * vbus_voltage

PHASE_INDUCTANCE_OUT_OF_RANGE = 7 (0x7)

The measured motor phase inductance is outside of the plausible range.

See PHASE_RESISTANCE_OUT_OF_RANGE for details.

UNBALANCED_PHASES = 8 (0x8)

The motor pahses are not balanced.

INVALID_MOTOR_TYPE = 9 (0x9)
ILLEGAL_HALL_STATE = 10 (0xA)
TIMEOUT = 11 (0xB)
HOMING_WITHOUT_ENDSTOP = 12 (0xC)
INVALID_STATE = 13 (0xD)
NOT_CALIBRATED = 14 (0xE)

The requested state could not be entered because the axis is not calibrated.

The required calibrations depend on the axis configuration, the requested state and the requested control mode.

The most common cause for this error is requesting AxisState.CLOSED_LOOP_CONTROL before first running AxisState.MOTOR_CALIBRATION and AxisState.ENCODER_OFFSET_CALIBRATION.

class ODrive.EncoderId
NONE = 0 (0x0)
INC_ENCODER0 = 1 (0x1)
INC_ENCODER1 = 2 (0x2)
INC_ENCODER2 = 3 (0x3)
SENSORLESS_ESTIMATOR = 4 (0x4)
SPI_ENCODER0 = 5 (0x5)
SPI_ENCODER1 = 6 (0x6)
SPI_ENCODER2 = 7 (0x7)
HALL_ENCODER0 = 8 (0x8)
HALL_ENCODER1 = 9 (0x9)
AMT21_ENCODER0 = 10 (0xA)
AMT21_ENCODER1 = 11 (0xB)
AMT21_ENCODER2 = 12 (0xC)
ONBOARD_ENCODER0 = 13 (0xD)
ONBOARD_ENCODER1 = 14 (0xE)
class ODrive.SpiEncoderMode
DISABLED = 0 (0x0)
RLS = 1 (0x1)
AMS = 2 (0x2)
CUI = 3 (0x3)
AEAT = 4 (0x4)
MA732 = 5 (0x5)
class ODrive.MotorType
HIGH_CURRENT = 0 (0x0)

Used for all standard “hobby-style” motors Permanant Magnet AC (PMAC) or Brushless DC (BLDC) motors. This is the default. Note: Assumes sinusoidal back-EMF, “wye” connected motors. Trapezoidal bEMF may have reduced controllability.

GIMBAL = 2 (0x2)

Enables voltage-only FOC where V=IR can be assumed to be correct. Used for high-phase-resistance motors (> 1 ohm), which are typically sold as “Gimbal” motors.

ACIM = 3 (0x3)

Used for FOC control of AC Induction Motors (ACIM), aka Asynchronous motors,

class ODrive.SystemStats.Usb
rx_cnt: Uint32Property
tx_cnt: Uint32Property
tx_overrun_cnt: Uint32Property
class ODrive.SystemStats.I2C
addr: Uint8Property
addr_match_cnt: Uint32Property
rx_cnt: Uint32Property
error_cnt: Uint32Property
class ODrive.Amt21EncoderGroup0.Config
enable: BoolProperty
rs485: Uint8Property
gpio: Uint8Property
addr0: Uint8Property
class ODrive.Can.Error
DUPLICATE_CAN_IDS = 1 (0x1)
class ODrive.Can.Config
baud_rate: Uint32Property

The baudrate of the CAN bus. Only compatible baudrates are accepted. The baud rate must be integer-divisible by 10’000’000. Note that baudrates above 1’000’000 violate the CAN classic specification.

protocol: Property[ODrive.Can.Protocol]
class ODrive.Can.Protocol
SIMPLE = 1 (0x1)
class ODrive.Axis.Config
startup_max_wait_for_ready: Float32Property

Maximum time to wait for active_errors_ to go clear before trying to start any of the startup actions. Default 3 seconds.

startup_motor_calibration: BoolProperty

Run motor calibration at startup, skip otherwise

Run encoder index search after startup, skip otherwise this only has an effect if commutation_mapper.config.use_index_gpio is also true

startup_encoder_offset_calibration: BoolProperty

Run encoder offset calibration after startup, skip otherwise

startup_closed_loop_control: BoolProperty

Enable closed loop control after calibration/startup

startup_homing: BoolProperty

Enable homing after calibration/startup

enable_step_dir: BoolProperty

Enable step/dir input after calibration. Make sure to set the corresponding GPIO’s mode to GpioMode.DIGITAL.

step_dir_always_on: BoolProperty

Keep step/dir enabled while the motor is disabled. This is ignored if enable_step_dir is false. This setting only takes effect on a state transition into idle or out of closed loop control.

calib_range: Float32Property
calib_scan_distance: Float32Property
calib_scan_vel: Float32Property
index_search_at_target_vel_only: BoolProperty
watchdog_timeout: Float32Property
enable_watchdog: BoolProperty

Enables the watchdog for this axis.

When the watchdog expires (after config.watchdog_timeout), the axis is put into AxisState.IDLE. The watchdog can be reset by the function axis.watchdog_feed(), or by certain UART or CAN messages. See the respective interface documenation for details.

step_gpio_pin: Uint16Property
dir_gpio_pin: Uint16Property
error_gpio_pin: Uint16Property
enable_error_gpio: BoolProperty
calibration_lockin: ODrive.Axis.Config.CalibrationLockin
sensorless_ramp: ODrive.Axis.LockinConfig
general_lockin: ODrive.Axis.LockinConfig
can: ODrive.Axis.CanConfig
load_encoder: Property[ODrive.EncoderId]
commutation_encoder: Property[ODrive.EncoderId]
encoder_bandwidth: Float32Property

Applies to both commutation and load encoder. If the same encoder is used for both axes, this is ignored on axis0.

I_bus_hard_min: Float32Property

If the controller fails to keep this motor’s DC current (axis.motor.alpha_beta_frame_controller.I_bus) above this value the motor gets disarmed immediately. Most likely you want a negative value here. Set to -inf to disable. Take noise into account when choosing a value.

I_bus_hard_max: Float32Property

If the controller fails to keep this motor’s DC current (axis.motor.alpha_beta_frame_controller.I_bus) below this value the motor gets disarmed immediately. Usually this is set in conjunction with I_bus_hard_min. Set to inf to disable. Take noise into account when choosing a value.

torque_soft_min: Float32Property

Minimum negative commanded torque allowed in the torque loop. This is usually a negative number.

torque_soft_max: Float32Property

Maximum positive commanded torque allowed in the torque loop. If you set this, in all likelihood you also want to set torque_soft_min.

motor: ODrive.Axis.Config.Motor
class ODrive.Axis.TaskTimes
thermistor_update: ODrive.TaskTimer
sensorless_estimator_update: ODrive.TaskTimer
endstop_update: ODrive.TaskTimer
can_heartbeat: ODrive.TaskTimer
controller_update: ODrive.TaskTimer
open_loop_vector_generator_update: ODrive.TaskTimer
acim_estimator_update: ODrive.TaskTimer
motor_update: ODrive.TaskTimer
current_controller_update: ODrive.TaskTimer
current_sense: ODrive.TaskTimer
pwm_update: ODrive.TaskTimer
class ODrive.Axis.LockinConfig
current: Float32Property
ramp_time: Float32Property
ramp_distance: Float32Property
accel: Float32Property
vel: Float32Property
finish_distance: Float32Property
finish_on_vel: BoolProperty
finish_on_distance: BoolProperty
class ODrive.Axis.CanConfig
node_id: Uint32Property

Changes take effect after a reboot

is_extended: BoolProperty

Changes take effect after a reboot

heartbeat_rate_ms: Uint32Property
encoder_rate_ms: Uint32Property
class ODrive.Axis.AxisState
UNDEFINED = 0 (0x0)

will fall through to idle

IDLE = 1 (0x1)

Disable motor PWM and do nothing.

STARTUP_SEQUENCE = 2 (0x2)

Run the startup procedure.

the actual sequence is defined by the config.startup… flags

FULL_CALIBRATION_SEQUENCE = 3 (0x3)

Run motor calibration and then encoder offset calibration (or encoder index search if commutation.config.use_index_gpio is True).

MOTOR_CALIBRATION = 4 (0x4)

Measure phase resistance and phase inductance of the motor.

After that you don’t have to run the motor calibration on the next start up. * This modifies the variables config.motor.phase_resistance and config.motor.phase_inductance.

Turn the motor in one direction until the encoder index is traversed.

This state can only be entered if commutation.config.use_index_gpio is True).

ENCODER_OFFSET_CALIBRATION = 7 (0x7)

Turn the motor in one direction for a few seconds and then back to measure the offset between the encoder position and the electrical phase.

CLOSED_LOOP_CONTROL = 8 (0x8)

Run closed loop control.

  • The action depends on the controller.config.control_mode.

  • Can only be entered if the motor is calibrated

(config.motor.phase_resistance_inductance_valid).

LOCKIN_SPIN = 9 (0x9)

Run lockin spin.

Can only be entered if the motor is calibrated (config.motor.phase_resistance_inductance_valid).

ENCODER_DIR_FIND = 10 (0xA)

Run encoder direction search.

Can only be entered if the motor is calibrated (config.motor.phase_resistance_inductance_valid).

HOMING = 11 (0xB)

Run axis homing function.

Endstops must be enabled to use this feature.

ENCODER_HALL_POLARITY_CALIBRATION = 12 (0xC)

Rotate the motor in lockin and calibrate hall polarity

ODrive assumes 120 degree electrical hall spacing. This routine determines if that is the case and sets the polarity if the halls are on 60 degree electrical spacing

ENCODER_HALL_PHASE_CALIBRATION = 13 (0xD)

Rotate the motor for 30s to calibrate hall sensor edge offsets

The phase offset is not calibrated at this time, so the map is only relative

class ODrive.Axis.Config.CalibrationLockin
current: Float32Property
ramp_time: Float32Property
ramp_distance: Float32Property
accel: Float32Property
vel: Float32Property
class ODrive.Axis.Config.Motor
motor_type: Property[ODrive.MotorType]
pole_pairs: Uint32Property

Number of magnet pole pairs in the motor’s rotor.

This is the number of magnet poles in the rotor, divided by two. This is not the same as the number of coils in the stator.

To find this, you can simply count the number of permanent magnets in the rotor, if you can see them.

Otherwise a good way to find the number of pole pairs is with a current limited power supply. Connect any two of the three phases to a power supply outputting around 2A, spin the motor by hand, and count the number of detents. This will be the number of pole pairs. If you can’t distinguish the detents from the normal cogging present when the motor is disconnected, increase the current.

Another way is sliding a loose magnet in your hand around the rotor, and counting how many times it stops. This will be the number of _pole pairs_. If you use a ferrous piece of metal instead of a magnet, you will get the number of _magnet poles_.

phase_resistance: Float32Property
phase_inductance: Float32Property
phase_resistance_inductance_valid: BoolProperty

Indicates whether phase_resistance and phase_inductance are valid. This flag is automatically set to true after successful motor calibration. It can also be set manually if phase_resistance and phase_inductance are set manually. The motor will not spin unless this is true.

torque_constant: Float32Property

Torque constant of the motor.

This is the ratio of torque produced by the motor per Amp of current delivered to the motor. This should be set to 8.27 / (motor KV).

If you decide that you would rather command torque in units of Amps, you could simply set the torque constant to 1.

If you don’t command/monitor torque directly but only use velocity/position control, this value has no effect.

direction: Float32Property

Direction of the motor (+1 or -1) with respect to the axis position space. This affects the spin direction of calibration procedures.

current_control_bandwidth: Float32Property

Sets the PI gains of the Q and D axis FOC control according to phase_resistance and phase_inductance to create a critically-damped controller with a -3dB bandwidth at this frequency.

R_wL_FF_enable: BoolProperty

Enables automatic feedforward of the R and omega*L term in the current controller.

bEMF_FF_enable: BoolProperty

Enables automatic feedforward of the bEMF term in the current controller.

ff_pm_flux_linkage: Float32Property

Flux linkage of the motor, used by the motor model.

By default the back-EMF feedforward term assumes a flux linkage of: flux_linkage = 2/3 * torque_constant / pole_pairs which is equivalent to flux_linkage = 5.51328895422 / (pole_pairs * motor_kv)

This default can be overriden by specifying this parametter and setting (ff_pm_flux_linkage_valid = True).

ff_pm_flux_linkage_valid: BoolProperty
motor_model_l_d: Float32Property

d-axis phase inductance of the motor, used by the motor model

If specified (motor_model_l_dq_valid = True), overrides the d-axis phase inductance used by the motor model (feedforward and field weakening). This does not affect the current controller gains. If left empty (motor_model_l_dq_valid = False) phase_inductance is used instead.

motor_model_l_q: Float32Property

q-axis phase inductance of the motor, used by the motor model

If specified (motor_model_l_dq_valid = True), overrides the q-axis phase inductance used by the motor model (feedforward and field weakening). This does not affect the current controller gains. If left empty (motor_model_l_dq_valid = False) phase_inductance is used instead.

motor_model_l_dq_valid: BoolProperty
calibration_current: Float32Property

The current used to measure resistance during AxisState.MOTOR_CALIBRATION.

resistance_calib_max_voltage: Float32Property

The maximum voltage allowed during AxisState.MOTOR_CALIBRATION.

This should be set to less than (0.5 * vbus_voltage), but high enough to satisfy V=IR during motor calibration, where I is config.calibration_current and R is config.phase_resistance

current_soft_max: Float32Property

Maximum commanded current allowed for this motor. There is a separate limit current_soft_max that pertains to the ODrive’s power stage.

current_hard_max: Float32Property

Maximum measured current allowed. Any measurement above current_hard_max will throw a CURRENT_LIMIT_VIOLATION error. Changing this variable can lead to reconfiguration of low level hardware at the next opportunity (when the axis is in IDLE). This will incur a 0.7s delay until the axis can be activated again. There is a separate limit current_hard_max that pertains to the ODrive’s power stage.

current_slew_rate_limit: Float32Property

Maximum slew rate for the current setpoint.

Must be strictly positive.

acim_gain_min_flux: Float32Property
acim_autoflux_enable: BoolProperty
acim_autoflux_min_Id: Float32Property
acim_autoflux_attack_gain: Float32Property
acim_autoflux_decay_gain: Float32Property
acim_nominal_slip_vel: Float32Property

1/(2*pi*rotor_tau), where rotor_tau is time constant of the rotor (L_r/R_r)

sensorless_observer_gain: Float32Property
sensorless_pll_bandwidth: Float32Property
sensorless_pm_flux_linkage: Float32Property

Flux linkage of the motor, used by the sensorless estimator.

By default the sensorless estimator derives the motor flux linkage as: flux_linkage = 2/3 * torque_constant / pole_pairs which is equivalent to flux_linkage = 5.51328895422 / (pole_pairs * motor_kv)

This default can be overriden by specifying this parametter and setting (sensorless_pm_flux_linkage_valid = True).

sensorless_pm_flux_linkage_valid: BoolProperty
class ODrive.Mapper.Config
circular: BoolProperty
circular_output_range: Float32Property
scale: Float32Property
offset_valid: BoolProperty
offset: Float32Property
index_offset_valid: BoolProperty
index_offset: Float32Property
use_index_gpio: BoolProperty
index_search_always_on: BoolProperty

Listen for index pulses even when not explicitly running index search and even when the motor is disarmed. In case the index pulse is fairly wide (low resolution encoders or hall effect sensors), care must be taken as to which direction the motor is spun to register the index.

index_gpio: Uint8Property
use_endstop: BoolProperty
class ODrive.IncrementalEncoder.Config
enabled: BoolProperty
cpr: Uint32Property

Counts per revolution of the encoder. This is 4x the Pulse Per Revolution (PPR) value. Usually this is indicated in the datasheet of your encoder.

class ODrive.HallEncoder.Config
enabled: BoolProperty
hall_polarity: Uint8Property
hall_polarity_calibrated: BoolProperty
ignore_illegal_hall_state: BoolProperty
class ODrive.SpiEncoder.Config
ncs_gpio: Uint8Property
mode: Property[ODrive.SpiEncoderMode]
delay: Float32Property

Delay of the position reading of the encoder. The position reading is forward-projected based on the velocity estimate and this value.

class ODrive.Interpolator.Config
dynamic: BoolProperty
class ODrive.OnboardThermistorCurrentLimiter.Config
temp_limit_lower: Float32Property

The lower limit when the controller starts limiting current.

temp_limit_upper: Float32Property

The upper limit when current limit reaches 0 Amps and an over temperature error is triggered.

enabled: BoolProperty

Whether this thermistor is enabled.

class ODrive.OffboardThermistorCurrentLimiter.Config
gpio_pin: Uint16Property
poly_coefficient_0: Float32Property
poly_coefficient_1: Float32Property
poly_coefficient_2: Float32Property
poly_coefficient_3: Float32Property
temp_limit_lower: Float32Property

The lower limit when the controller starts limiting current.

temp_limit_upper: Float32Property

The upper limit when current limit reaches 0 Amps and an over temperature error is triggered.

enabled: BoolProperty

Whether this thermistor is enabled.

class ODrive.Controller.Config
gain_scheduling_width: Float32Property
enable_vel_limit: BoolProperty
enable_torque_mode_vel_limit: BoolProperty

Enable velocity limit in torque control mode (requires a valid velocity estimator).

enable_gain_scheduling: BoolProperty

Enable the experimental “gain scheduling” module, which reduces the pos_gain, vel_gain, and vel_integrator_gain according to the position error. Also known as “anti-hunt”

enable_overspeed_error: BoolProperty

Enables the velocity controller’s overspeed error

control_mode: Property[ODrive.Controller.ControlMode]
input_mode: Property[ODrive.Controller.InputMode]
pos_gain: Float32Property

units = (turn/s) / turn

vel_gain: Float32Property

units = N·m / (turn/s)

vel_integrator_gain: Float32Property

units = N·m / (turn/s * s)

vel_integrator_limit: Float32Property

Limit the integrator output (independent of proportional gain output). Set to infinity to disable. Units = N·m

vel_limit: Float32Property

Infinity to disable.

vel_limit_tolerance: Float32Property

Ratio to vel_limit. Infinity to disable.

vel_ramp_rate: Float32Property
torque_ramp_rate: Float32Property
circular_setpoints: BoolProperty
circular_setpoint_range: Float32Property

circular range in [turns] for position setpoints when circular_setpoints is True

absolute_setpoints: BoolProperty

True: Position setpoints are absolute with respect to some calibration method (usually homing). Position control will not work if the absolute position is not known yet. False: Position setpoints are relative to the startup position.

Requires the axis to be in AxisState.IDLE to take effect.

use_commutation_vel: BoolProperty

When using two separate encoders for position control and commutation, this selects which of the two encoders is used for velocity control. If false, the position encoder is used, else the commutation encoder is used. commutation_vel_scale must be set accordingly.

commutation_vel_scale: Float32Property

If use_commutation_vel is true, this defines the scale to apply to the commutation velocity. If the position encoder is mounted after a gearbox with a reduction ratio 1:N, this variable must be set to 1/pole_pairs/N (positive or negative, depending on the setup).

steps_per_circular_range: Int32Property

Number of steps within the circular setpoint range. Set this and the circular setpoint range to powers of 2 for the best results.

homing_speed: Float32Property

The speed at which the axis moves towards the min_endstop during AxisState.HOMING

inertia: Float32Property
axis_to_mirror: Uint8Property

The axis used for mirroring when in InputMode.MIRROR

mirror_ratio: Float32Property

The ratio applied to position and velocity movements of the mirrored axis. To reverse movements, use a negative value

torque_mirror_ratio: Float32Property

The ratio applied to torque values of the mirrored axis.

input_filter_bandwidth: Float32Property

The desired bandwidth for InputMode.POS_FILTER.

Sets the position filter’s P and I gains to emulate a critically-damped 2nd order mass-spring-damper motion.

anticogging: ODrive.Controller.Config.Anticogging
mechanical_power_bandwidth: Float32Property

Bandwidth for mechanical power estimate. Used for spinout detection

electrical_power_bandwidth: Float32Property

Bandwidth for electrical power estimate. Used for spinout detection. Dot product of Vdq and Idq

spinout_mechanical_power_threshold: Float32Property

Mechanical power threshold for spinout detection. This should be a negative value

spinout_electrical_power_threshold: Float32Property

Electrical power threshold for spinout detection. This should be a positive value

class ODrive.Controller.Autotuning
frequency: Float32Property
pos_amplitude: Float32Property
vel_amplitude: Float32Property
torque_amplitude: Float32Property
pos_phase: Float32Property
vel_phase: Float32Property
vel_burst_factor: Uint8Property
torque_phase: Float32Property
class ODrive.Controller.ControlMode
VOLTAGE_CONTROL = 0 (0x0)

Note: This mode is not used internally. For voltage-only FOC, use MotorType.GIMBAL

TORQUE_CONTROL = 1 (0x1)

Uses only the inner torque control loop. Use input_torque to command desired torque. Note the setting config.motor.torque_constant. Note the setting enable_torque_mode_vel_limit.

VELOCITY_CONTROL = 2 (0x2)

Uses both the inner torque control loop and the velocity control loop. Use input_vel to command desired velocity, and input_torque.

POSITION_CONTROL = 3 (0x3)

Uses the inner torque loop, the velocity control loop, and the outer position control loop. Use input_pos to command desired position, input_vel to command velocity feed-forward, and input_torque for torque feed-forward.

class ODrive.Controller.InputMode
INACTIVE = 0 (0x0)

Disable inputs. Setpoints retain their last value.

PASSTHROUGH = 1 (0x1)

Pass input_xxx through to xxx_setpoint directly.

Valid Inputs

Valid Control Modes

VEL_RAMP = 2 (0x2)

Ramps a velocity command from the current value to the target value.

Configuration Values

Valid Inputs

Valid Control Modes

POS_FILTER = 3 (0x3)

Implements a 2nd order position tracking filter.

Intended for use with step/dir interface, but can also be used with position-only commands.

Trapezoidal Planner Response

Result of a step command from 1000 to 0

Configuration Values

Valid Inputs

Valid Control Modes

MIX_CHANNELS = 4 (0x4)

Not Implemented.

TRAP_TRAJ = 5 (0x5)

Implementes an online trapezoidal trajectory planner.

Trapezoidal Planner Response

Configuration Values

Valid Inputs

Valid Control Modes

TORQUE_RAMP = 6 (0x6)

Ramp a torque command from the current value to the target value.

Configuration Values

Valid Inputs

Valid Control Modes

MIRROR = 7 (0x7)

Implements “electronic mirroring”.

This is like electronic camming, but you can only mirror exactly the movements of the other motor, according to a fixed ratio.

Configuration Values

Valid Inputs

  • None. Inputs are taken directly from the other axis encoder estimates

Valid Control Modes

TUNING = 8 (0x8)

Implements a tuning mode

Used for tuning your odrive, this mode allows the user to set different frequencies. Set control_mode for the loop you want to tune, then set the frequency desired. The ODrive will send a 1 turn amplitude sine wave to the controller with the given frequency and phase.

class ODrive.Controller.Config.Anticogging
index: Uint32Property
pre_calibrated: BoolProperty
calib_anticogging: BoolProperty
calib_pos_threshold: Float32Property
calib_vel_threshold: Float32Property
cogging_ratio: Float32Property
anticogging_enabled: BoolProperty
class ODrive.TrapezoidalTrajectory.Config
vel_limit: Float32Property
accel_limit: Float32Property
decel_limit: Float32Property
class ODrive.Endstop.Config
gpio_num: Uint16Property

Make sure the corresponding GPIO is in GpioMode.DIGITAL.

enabled: BoolProperty
offset: Float32Property
is_active_high: BoolProperty
debounce_ms: Uint32Property
class ODrive.MechanicalBrake.Config
gpio_num: Uint16Property
is_active_low: BoolProperty